A Texture-Based Energy for Active Contour Image Segmentation
نویسندگان
چکیده
This paper presents a two-dimensional deformable model-based image segmentation method that integrates texture feature analysis into the model evolution process. Typically, the deformable models use edge and intensity-based features as the influencing image forces. Incorporation of the image texture information can increase the methods effectiveness and application possibilities. The algorithm generates a set of texture feature maps and selects the features that are best suited for the currently segmented region. Then, it incorporates them into the image energies that control the deformation process. Currently, the method uses the Grey Level Co-occurrence Matrix (GLCM) texture features, calculated using hardware acceleration. The preliminary experimental results, compared with outcomes obtained using standard energies, show a clearly visible improvement of the segmentation on images with various texture patterns.
منابع مشابه
ناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملAn active contour model based on fused texture features for image segmentation
Texture image segmentation plays an important role in various computer vision tasks. In this paper, a convex texture image segmentation model is proposed. First, the texture features of Gabor and GLCM (gray level co-occurrence matrix) are extracted for original image. Then, the two kinds of texture features are fused together to effectively construct a discriminative feature space by concatenat...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملSemi-supervised Ultrasound Image Segmentation Based on Direction Energy and Texture Intensity
For the ultrasound images accurate segmentation problem, this paper proposes a novel SVM semi-supervised segmentation method based on major features in curvelet domain. Firstly, ultrasound images were decomposed into different directions and frequencies in the curvelet domain, then the cauchy model was used to simulate curvelet coefficients distribution, thus the main distribution of the curvel...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کامل